Wednesday, September 11, 2013

Answering a Question: Dealing with Different Data Types

I get a lot of e-mail. Some of it is junk, but some of it contains questions on all sorts of issues. I cannot answer everything that comes into my in box or I wouldn't have time to earn a living. But every now and then I will answer a question here on the blog.

Today's question is:


Dear Mr. Mullins, 
I have a question I hope you can help me with.  In DB2 I am attempting to compare two columns, however one column is data type "Integer" and the other is data type "Decimal".  Can you give me an idea on how to convert the data types so they can be compared?




And here is my answer:
You can cast one data type to the other. For example, to cast the decimal to an integer you would use the INTEGER function, like so:

           WHERE INTEGER(dec_col) = int_col

Or you could cast the integer column to a decimal like this:

           WHERE DECIMAL(int_col) = dec_col
Alternately, you can use CAST to cast either column to either data type. For example, CAST(dec_col AS INTEGER)…  Hope this helps…


Friday, September 06, 2013

Top Ten Most Pervasive Myths About DB2 for z/OS

Today's blog offers up yet another Top Ten list for DB2 users, perusers, and abusers... This time counting down the most common myths that are perpetrated "out there" regarding DB2 and how it works (or doesn't work)...


1.Use Views to Insulate Programs from Change

              This lie has been told for almost as long as DB2 has been around. I first wrote about this way back in 1991 for Database Programming & Design. Check that article out here if you don't understand why this is a bad idea, in general. 

2.Locking Problems Indicate a Database Problem

              Locking problems are generally caused by bad program design. You should write code to reduce the duration of locks and to COMMIT regularly... and then locking won't be a problem, for the most part.

3.Primary Key is Usually a Good Choice for Clustering

              Actually, the foreign key is likely to be a better choice. When you join PK-->FK there will be one PK to multiple FK. Wouldn't it be best if the FKs were clustered on the same page (or pages)?

4.Just Using the Defaults Should Work Out Well

              Don't rely on defaults. Many of them are outdated or wrong... and even if they aren't it will be better if you review and investigate all options before explicitly specifying the parameter value you want. 

5.Programmers Don’t Need to Know How to Tune SQL

              Programming performance-oriented SQL into your programs from the beginning would go a long way toward improving performance overall... and reducing the length of the application development lifecycle. 

6.Black Boxes Work Well for Performance

              No they don't!!!

7.Using NULLs Can Save Space

              No they can't!!!

8.RUNSTATS Aren’t That Important

              If you don't work with up-to-date RUNSTATS then you are hobbling the DB2 Optimizer and almost assuredly getting sub-optimal access paths for your DB2 SQL. 


9.DB2 is a Hog

              If you don't use it properly, every piece of software can become a resource hog. If you acquire the knowledge on how to work properly with DB2 then it will hum along like a well-oiled machine!

10.It Depends!

              This is the answer that can be used for every DB2 question. But if that answer is not followed up with what "it" depends upon, then it is a useless answer... and whoever gave you that answer is probably just trying to get rid of you instead of helping you with your problems.

Sunday, September 01, 2013

Top Ten Common SQL Mistakes (with DB2 for z/OS)

There are many different types of development mistakes that can be made when you are coding a complex application system. But probably the most pervasive mistakes being made when developing an application using DB2 for z/OS are SQL mistakes... well, actually, that statement is probably true regardless of the DBMS, but I am going to focus on DB2 for z/OS given that this is a blog that focuses on DB2 and mainframe issues.

  1. Assuming an ORDER BY is not necessary for ordered results - if you want your results always to be returned in a specific order, you must include the ORDER BY clause. If you fail to do so, a future rebind can change the access path and also possibly change the order of your results set.
  2. Forgetting the NULL indicator - when your query can return a null, but sure to include a null indicator or you will get a -305 SQLCODE (22002 SQLSTATE). And be sure to check the null indicator to see if the data is null or not!
  3. Incorrect expectations when using the NOT IN predicate with NULLs - Nulls can be confusing when using the IN predicate. For example, what if we want to find all Colors who are not assigned to a particular Product using a query like shown below. THe problem arises when the P.color can be NULL. The NULL causes the predicate to be UNKNOWN so the results set is always empty. 
           SELECT C.color
           
FROM   Colors AS C
           
WHERE  C.color NOT IN (SELECT P.color
                                  
FROM Products AS P);

  1. Coding predicates appropriately in Outer Joins - Sometimes it can be difficult to figure out how to code outer joins appropriately if you don't code them very often. Terry Purcell has written a nice article on the topic that can be found here.
  2. Not coding a cursor for a multi-row result - When more than one row can be returned by your query you must use a cursor (or specify FETCH FIRST 1 ROW ONLY)
  3. Recompiling but not binding - if you make changes to the SQL, you have to BIND it again. Otherwise it won't work! 
  4. Forgetting to use single quotes around strings (instead of double quotes) - DB2 SQL expects single quotes around character strings.
  5. Trying to modify a Primary Key column - you cannot modify a primary key. A primary key should be unique within the table and immutable.
  6. Forcing dynamic SQL into static SQL (sometimes hundreds of static SQL statements) - you should analyze the type and nature of your database queries to determine whether they should be static or dynamic. Consider using the advice here (static SQL v. dynamic SQL) to guide you.
  7. Asking for more data than you need (columns and/or rows) - specify only the columns that you actually need in your SELECT-list... and use WHERE clauses (predicates) to filter the data to just that data that you need before bringing it into the program. The lesser the amount of data that DB2 needs to transfer from the database to your program, the more efficient things will be!

Thursday, August 22, 2013

NoSQL Gets Me Thinking About ACID

This week I attended the NoSQL Now Conference in San Jose, California. This conference focused on NoSQL technology and implementations and a LOT of the discussion focused on transactions and whether or not Big Data and NoSQL databases were at a disadvantage when it comes to their lack of support for ACID (mostly).

You can read all about my experience at this conference on my Data Technology Today blog in the following two posts:


At any rate, though, I got to thinking... and those of you who know me understand that that can be a dangerous thing. Basically, ACID is not a topic that relational folks sit around talking about. It is kind of taken for granted. So I thought it might be a good idea to reinforce the definition of ACID and why it is so important in DB2... and the relational world in general.

ACID is an acronym for atomicity, consistency, isolation, and durability. Each of these four qualities is necessary for a transaction to be designed correctly and deliver data integrity when complete:
  • Atomicity means that a transaction must exhibit “all or nothing” behavior. Either all of the instructions within the transaction happen, or none of them happen. Atomicity preserves the “completeness” of the business process.
  • Consistency refers to the state of the data both before and after the transaction is executed. A transaction maintains the consistency of the state of the data. In other words, after running a transaction, all data in the database is “correct.”
  • Isolation means that transactions can run at the same time. Any transactions running in parallel have the illusion that there is no concurrency. In other words, it appears that the system is running only a single transaction at a time. No other concurrent transaction has visibility to the uncommitted database modifications made by any other transactions. To achieve isolation, a locking mechanism is required.
  • Durability refers to the impact of an outage or failure on a running transaction. A durable transaction will not impact the state of data if the transaction ends abnormally. The data will survive any failures.

Let’s use an example to better understand the importance of ACID transactions to relational database applications. Consider a banking application. Assume that you wish to withdraw $50 from your account with your bank. This business process requires a transaction to be executed. You request the money either in person by handing a slip to a bank teller or by using an ATM. When the bank receives the request, it performs the following tasks, which make up the complete business process. The bank will

  1. Check your account to make sure you have the necessary funds to withdraw the requested amount.
  2. If you do not, deny the request and stop; otherwise continue processing.
  3. Debit the requested amount from your checking account.
  4. Produce a receipt for the transaction.
  5. Deliver the requested amount and the receipt to you.

The transaction that is run to perform the withdrawal must complete all of these steps, or none of these steps, or else one of the parties in the transaction will be dissatisfied. If the bank debits your account but does not give you your money, then you will not be satisfied. If the bank gives you the money but does not debit the account, the bank will be unhappy. Only the completion of every one of these steps results in a “complete business process.” Database developers must understand the requisite business processes and design transactions that ensure ACID properties.

Unit of work (UOW) is another transaction term that describes a physical transaction. A UOW is a series of instructions and messages that, when executed, guarantees data integrity. So a UOW and a transaction are similar in concept. However, a UOW is not necessarily a complete business process—it can be a subset of the business process, and a group of units of work can constitute a single transaction. Each UOW must possess ACID characteristics. In other words, if the transaction were to fail, the state of the data upon failure must be consistent in terms of the business requirements.

To summarize, a transaction—when executed alone, on a consistent database—will either complete, producing correct results, or terminate, with no effect. In either case the resulting condition of the database will be a consistent state.

Hopefully after this discussion it is simple to see why relational databases—with many related tables—rely on ACID properties of transactions to maintain consistency. Of course, the NoSQL world has different use cases and, arguably, can get by with eventual consistency... that is, without ACID. But that is another topic that is, frankly, beyond the scope of this DB2/mainframe-focused blog. 

Hopefully, though, this review of ACID and its importance to data consistency was helpful.

Sunday, August 11, 2013

The Top Ten DB2 Development Best Practices

If you have been reading my blogs lately you know that I have been posting Top Ten lists of various types, and today's post offers up yet another one. This time, the list provides guidance for DB2 developers to keep in mind as they build DB2 applications...

1. Minimize network calls

The fewer number of times you need to make calls across the network the better your program will perform.

2. Minimize passes through the data

Try to read each data item only once. The more times you access the same data the worse performance will be.

3. Put the work into the SQL, not the program

Let SQL do the work... DB2 can optimize SQL better than you can optimize your programming language of choice.

4. Unlearn the “flat file” mentality

SQL is a set-based language. Each SQL statement can operate on multiple rows of data at once. And joins are more efficient than opening multiple cursors and performing "master file" processing logic on them.

5. Be sure data type and length match in predicates

Even though DB2 no longer automatically degrades non-matching predicates to Stage 2, it is still a best practice to match the data type and length for columns and host variables that participate in predicates.

6. Know your Stage 1, Stage 2, and Indexable predicates

...and avoid Stages 3 and 4!

7. Document your code

Without proper documentation application maintenance becomes difficult... especially if you used any SQL tuning tricks/techniques.

8. Always check the SQLCODE or SQLSTATE

If you don't check for an error you may be processing with bad, incorrect, or missing data.

9. Analyze your access paths (and tune your SQL in test)

If you do not examine the access paths formulated by the DB2 optimizer for your SQL then how do you know how efficient (or not) your code is (or will be).

10. Avoid Bachelor Programming Syndrome

Be sure to code COMMITs in your application programs