Showing posts with label DB2 Connect. Show all posts
Showing posts with label DB2 Connect. Show all posts

Friday, February 27, 2015

A Few DB2 Connect Guidelines


Here are a few guidelines for you to consider as you work to implement and optimize your usage of IBM's DB2 Connect gateway...

Consider DB2 Connect PE for Single Workstation Solutions  DB2 Connect PE can be a good choice for two-tier client/server applications running on desktop workstations that need to access data from mainframe DB2 databases. However, the personal edition is not suitable for deployment on multi-user systems and application servers.

If you have two people who share a workstation, DB2 Connect PE is a viable solution, because each person uses the workstation individually. That is, they cannot both use the workstation at the same time. Only one connection is required at any time for both of these users so only one license of DB2 Connect PE is required.
On the other hand, if you set up five workstations as dumb terminals making connections to a DB2 for z/OS server, you would need ten licenses of DB2 Connect PE. Of course, you could use DB2 Connect EE instead, too. Or setting up a client with a Type 4 driver can be sufficient.


Consider DB2 Connect EE for Multi-User Solutions  DB2 Connect EE is the required solution when a middle tier connectivity server is needed. DB2 Connect EE is suitable for environments where the number of concurrent users can be easily determined. However, DB2 Connect UE and ASE are preferable to EE for web-based applications and multi-tier client/server applications where the number of concurrent users is difficult, or impossible, to determine. This is so mostly due to the cost of licensing.

Again, using Type 4 drivers without a DB2 Connect gateway can be a sufficient solution for many organizations.
Setting Up the DDF for z/OS  You must set up the DDF as an application server to connect distributed applications to DB2 for z/OS. There are two ways of doing this:
  • INSERT the LUNAME of the remote system into the SYSIBM.LUNAMES table.
  • INSERT the LUNAME, SYSMODENAME, USERSECURITY, ENCRYPTPSWDS, MODESELECT, and USERNAMES values into the SYSIBM.LUNAMES table.

Be sure to perform a DDF update to the Boot Strap Data (BSDS) after making one of these changed. Because DDF will try to connect to VTAM you must ensure that VTAM is active when the DDF starts.


Configure Distributed Threads  Use the DSNZPARM CMTSTAT to control the behavior of distributed threads. CMTSTAT specifies whether a DDF thread is made active or inactive after it successfully commits or rolls back and holds no cursors. Consider setting CMTSTAT to INACTIVE because inactive connections consume less storage. A thread can become inactive only if it holds no cursors, has no temporary tables defined, and executes no statements from the dynamic statement cache.

If you specify ACTIVE, the thread remains active. Although this can improve performance it consumes system resources. If your installation supports a large number of connections, specify INACTIVE.

DB2 supports two different types of inactive threads:
  1. An inactive DBAT, previously called a type 1 inactive thread, has the same characteristics as inactive threads prior to DB2 V8. This type of thread remains associated with the connections, but DB2 minimizes the thread’s storage use as much as possible.
  2. An inactive connection, previously called a type 2 inactive thread, uses less storage than an inactive DBAT. In this case, the connections are disassociated from the thread. The thread can be pooled and reused for other connections, new or inactive. This provides better resource utilization because there are typically a small number of threads that can be used to service a large number of connections.

    Although inactive connections are preferable to inactive DBATs, not every thread can become an inactive connection. If a thread is to become inactive, DB2 tries to make it an inactive connection. If DB2 cannot make it an inactive connection, it tries to make it an inactive DBAT. If neither attempt is successful, the thread remains active.


Increasing Data Transfer Rates  In addition to blocking of rows for a query result set, DB2 can also return multiple query blocks in response to an OPEN or FETCH request to a remote client (such as DB2 Connect). Instead of repeatedly sending requests to DB2 for z/OS requesting one block of data at a time, DB2 Connect can optionally request that the server send back some number of extra query blocks. These extra query blocks allow the client to minimize network traffic, thereby improving performance. DB2 Connect can be set up to request extra query blocks from a mainframe DB2 server by default.

Use the EXTRA BLOCKS SRV parameter on the DB2 DDF installation panel to enable support for extra query blocks. The minimum value for this parameter is 0 and the maximum is 100. Favor keeping the parameter set to the default value, which is 100.

You can also set up the EXTRA BLOCK REQ installation parameter to limit the number of extra DRDA query blocks that DB2 is to request from a remote DRDA server. This parameter does not limit the size of the SQL query answer set. It simply controls the total amount of data that can be transmitted on a network exchange. The minimum value for this parameter is 0 and the maximum is 100, which is also the default.

On the client side, you activate support on a cursor or statement basis. It is controlled by a query rowset size for a cursor, or the value of n in the OPTIMIZE FOR n ROWS clause or FETCH FIRST n ROWS ONLY clause.
Specify Character Data Types with Care  When character data is accessed using DB2 Connect, the choice of CHAR versus VARCHAR will impact performance. VARCHAR is more efficient if the length varies significantly. If the size of data does not vary much, CHAR is more efficient because each VARCHAR column requires two bytes of length information to be transmitted along with the data.

Of course, DB2 Connect transmission performance is but one consideration when choosing a data type. Refer to Chapter 5 for additional considerations.


BIND the DB2 Connect Utilities  DB2 Connect comes with several utilities that use embedded SQL, and therefore their programs must be bound to a database server before they can be used with that system. The list of bind files required by these utilities is contained in the following ddcsmvs.lst file for DB2 for z/OS. If you do not use the DB2 Connect utilities, you do not have to BIND their programs to each of your DB2 for z/OS database servers.

If DB2 Connect Enterprise Edition is installed, the DB2 Connect utilities must be bound to each database server once from each type of client platform, before they can be used with that system. For example, if you have 5 Windows clients and 4 Linux clients connecting to DB2 for z/OS using DB2 Connect EE, then BIND the programs in ddcsmvs.lst from one of the Windows clients, as well as from one of the Linux clients, and then from the DB2 Connect server. If all the clients are not at the same service level, you might need to BIND from each client for each particular service level.


Beware of SQLCODE and SQLSTATE Differences  Different IBM relational DBMSs will not always produce the same SQLCODE values for the same or similar errors. This can be trouble­some in distributed applications. There are two ways of handling this situation:
  • Use SQLSTATE instead of SQLCODE. The SQLSTATE values have the same basic meaning across the IBM’s DBMS products.
  • Use SQLCODE mapping.

DB2 Connect can map SQLCODEs and tokens from each IBM mainframe or iSeries server to your appropriate DB2 UDB system. You can specify your own SQLCODE mapping file if you want to override the default mapping or you are using a non-IBM database server that does not have SQLCODE mapping.

SQLCODE mapping is enabled by default. If you want to turn off SQLCODE mapping, specify NOMAP in the parameter string of the DCS directory or the DCE routing information object.


Assign Authids per Application  Consider assigning each distributed application a dedicated authid. This approach is superior to simply using the same authid for all applications because:
  •  Each authid can be assigned only the permissions it needs.
  •  You can use WLM to assign each authid different priorities, as needed.
  •  For troubleshooting, it is easier to identify the offending application.
  •  You can measure application resource usage by authid. 

Assure Appropriate Distributed Logon Authority  Be sure that DB2 administrators have the required authority on the distributed platforms that interact with DB2 for z/OS. For example, a UNIX logon should be available for the performance analyst or DBA to view db2diag.log and web application logs.

In addition, the logon should have sufficient authority to execute appropriate commands as needed. For example, iostat and vmstat are useful commands that may need to be issued.

Similar considerations should be made for Windows servers.